Skip to Content

About: Chrissy Meyer

Recent Posts by Chrissy Meyer

Genetic indexes: can one size fit all?

Indexes are important genetic selection tools. They combine all significant genetic traits into one package – and get producers away from setting minimum criteria for specific traits. That allows you to focus on creating a next generation of cows that are the right fit for your environment.

A global industry standard index like TPI has certainly helped dairy producers improve their herds. The one-size-fits all TPI index places 46% of the total weight on production traits, 28% on health and fertility traits and 26% on conformation traits.

However, an index like this assumes all farms face the same challenges within their herd. It assumes everyone has the same farm goals and milk markets. It simply serves as a general overview for a one-size-fits-all genetic plan.

Consider your goals

When you set your own, customized genetic plan, you can divide the weights as you see fit. To decide which production, health or conformation traits to include, consider your farm’s situation and future goals. How are you paid for milk? In a fluid milk market, you’ll likely put more emphasis on pounds of milk as compared to those who ship milk to a cheese plant. Are you expanding or at a stable herd size? If you’re looking to grow from within to expand your herd, you’ll want to put more emphasis on Productive Life and high fertility sires than the producers who are at a static herd size and able to cull voluntarily.

Your farm’s scenario is unique. With different goals, environments and situations, it’s evident there is no such thing as a one-size-fits-all index.

Make progress where it matters

Just 42 TPI points separate the 100th and 200th ranked genomic bulls on Holstein USA’s December 2017 Top 200 TPI list. Does a separation that small mean these bulls offer similar genetic benefits? Of course not!

To illustrate why, let’s compare three different genetic plan scenarios. One focuses on high production, one on high health, the other on high conformation. The tables below show the sires, traits and genetic averages for the top five Alta sires that meet each customized genetic plan. Notice the extreme amount of progress, and also the opportunity cost for using each particular index.

When high production is the goal, your genetic plan may be set with weights of 70% on production, 15% on health, and 15% on conformation. A team of bulls fitting that plan averages 2400 pounds PTAM and 171 pounds of combined fat and protein.

High Production: 70-15-15MilkProteinFatPLDPRSCSPTATUDCFLCTPI
AltaMONTOYA2089791058.02.22.792.091.840.932864
AltaAKUZAKI264078798.10.72.992.072.520.752747
AltaSPRITE253984884.2-0.83.032.332.131.532684
AltaEMBOSS260777974.5-0.53.071.311.470.812589
AltaWILLIE212375916.82.22.911.972.100.632766
240079926.30.82.961.952.010.932730

When health is the focus, a 30% production, 60% health, 10% conformation genetic plan might make sense for you. That team of bulls delivers averages of +9.5 PL, +5.0 DPR and 2.75 SCS. That’s more than four points higher for DPR than the high production group! However, you give up nearly 1100 pounds of milk and 41 pounds of components to get those high health numbers.

High Health: 30-60-10MilkProteinFatPLDPRSCSPTATUDCFLCTPI
AltaDEPOT910376311.47.02.480.680.801.002693
AltaKALISPELL1727527710.04.22.751.371.571.362734
AltaROBSON83555898.64.72.861.521.351.422802
AltaNITRO129554938.34.42.732.081.991.492871
Alta49ER181061709.04.62.931.071.441.032702
13155278.49.55.02.751.341.431.262760

Lastly, if your genetic goal is to improve conformation, the team below provides an average 2.47 for PTA Type, 2.86 Udder Composite, and nearly two points for Foot & Leg Composite. With that much emphasis on the conformation traits, you’ll sacrifice on pounds of milk, fat and protein, and give up some productive life and fertility.

High Conformation: 25-25-50MilkProteinFatPLDPRSCSPTATUDCFLCTPI
AltaSCION109848798.72.42.762.803.332.112786
AltaDRAGO162156857.22.43.052.962.792.562799
AltaPACKARD77048699.93.82.402.742.391.762839
AltaCR53137867.02.32.941.692.772.042669
AltaDPORT173558697.73.02.962.163.031.162749
115149788.12.82.822.472.861.932768

Now, compare those different genetic plan averages side-by-side. You can see that a mere 38 points separate these groups on TPI average. However, the genetic values for the production, health and conformation traits are extremely different.

MilkProFatPLDPRSCSPTATUDCFLCTPI
High Production: 70-15-15240079926.30.82.961.952.010.932730
High Health: 30-60-10131552789.552.751.341.431.262760
High type: 25-25-50115149788.12.82.822.472.861.932768

15 bulls in the Top 5

Most of the bulls above rank similarly for TPI. But not one bull appears in more than one of the customized genetic plan top-5 lists. With 15 bulls in the top five, it’s clear to see there’s no such thing as a perfect bull. There is, however a perfect genetic plan. It’s the one you customize for your farm to match your current situation and future goals.

Think back to the examples above. Think about TPI (46% production, 28% health, 26% conformation). If your main goal is to increase milk production in your herd, emphasizing too much on the health and conformation traits will mean you sacrifice pounds of milk and total components in the next generation of your herd.

Alternatively, maybe you really want to improve the longevity and fertility of your herd. In that case, an index that focuses on conformation will cost you 1.4 months of productive longevity and more than two points of pregnancy rate in the next generation!

Bringing it together

Sticking to an industry standard index like TPI could get you the best ranking bulls for that index only. But that index doesn’t necessarily match your needs. If you’re looking for a more focused approach, keep these points in mind to make the most progress toward your farm’s goals:

  1. There’s no such thing as a “one-size-fits-all” genetic index.
  2. Work with your trusted Alta advisor to set your own, unique, customized genetic plan. Consider your farm’s goals, future plans and milk market as you decide how much emphasis to place on the production, health and conformation traits.
  3. Maximize progress toward your genetic goals by using a group of the best sires to match your unique genetic plan.
0 Continue Reading →

The high value of low heritability

Most of us misunderstand heritability. In simple terms, for any given trait, heritability tells us how much of the difference in actual performance is due to genetics, as opposed to management or the environment.

To better understand, think about two cows in two different herds. How much of the difference in their milk production is due to genetics? How much is due to management or environment? It turns out about 30% of the milk production difference is due to genetics, while 70% is due to management and environment. Therefore, milk has a heritability of 0.30.

What about pregnancy rates? Management and environment account for the 96% majority of variation between daughters. So the influence of genetics is minor, at just 4%. Thus, Daughter Pregnancy Rate (DPR) has a heritability of 0.04.

We commonly refer to the health traits like Productive Life (PL), DPR and Somatic Cell Score (SCS) as the lower heritability traits. Many producers believe that low heritability equates to less, or slower, genetic progress. However, in spite of lower heritability, it would be wrong to conclude that DPR, PL or SCS are insignificant as a result.

Perspective is important

In genetics, accuracy shows through when we evaluate results within one herd. In that herd, if we evaluate within a specific lactation group, and then within a specific time of freshening, we find a contemporary group. By evaluating within one contemporary group, we reduce the impact of management and environmental differences.

The overall heritability for health traits like DPR and PL is low. When we break our evaluations down into contemporary groups, that’s when we find the true genetic differences.

The proof is in the numbers

Take this real-life example from a 1,500-cow dairy with very good reproductive performance. We’ve separated out first lactation cows into four groups, based on their sire’s DPR. It’s clear to see that the high DPR sires create daughters that become pregnant more quickly than the daughters of low DPR sires.

Table 1# of cowsAverage Sire DPRActual preg rate
Top 25% - High DPR1742.327%
Bottom 25% - Low DPR137-1.120%
difference3.47%

The same goes for Productive Life. Despite the low heritability at less than 9%, PL can make a real, noticeable difference in your herd.

This table compares how long the daughters of the industry’s best ten PL bulls and daughters of the industry’s bottom ten PL sires will last in a given herd. You can see that a higher percentage of high PL daughters, represented by the dark blue bars, remain in a herd than their low PL counterparts.

When you select for the lowly heritable PL, you will certainly create healthier, longer-living cows in your herd.

Focus on the economics

As a progressive dairy producer, don’t let confusion about heritability prevent you from using the right genetic tools to improve your herd. Health traits are economically important, and making improvement in these areas can have a huge impact on your bottom line.

Many traits have a high heritability, but no economic importance. In other words, we can make a lot of progress for these traits very quickly, but it will not make a more profitable cow.

A couple examples of high heritability traits are coat color and polled. Both of these traits have a heritability of 100 percent because they are completely controlled by genetics. However, even if we can make cows red or polled in one generation, what is the economic value of that?

By comparison, the economic value of more fertile cows that last longer because of fewer metabolic problems, fewer cases of mastitis, and less calving difficulty is clear to see. These genetic features make a more profitable production unit for each and every farm.

Selection secrets for healthier cows

When you set or reevaluate your genetic plan, take the following tips into account to maximize progress in the direction of your goals.

1. Define your goals

To set the right goals, first identify the most common reasons for culling in your herd. Is it reproduction, milk production, mastitis? This information gives you the basis for the genetic decisions you make going forward.

2. Choose your tools

Health traits offer dairy producers some powerful tools to help correct for low reproduction, metabolic problems, etc. Identify how important each of these trouble areas are to you. Place a proportionate emphasis on these traits when choosing the group of sires to use on your dairy.

3. Customize the solution

Industry standard selection indexes put different and continually changing weights on health traits. So don’t assume they reflect your individual goals and needs. Work with your trusted Alta advisor to make sure your genetic plan is customized to match your current situation and future goals.

0 Continue Reading →

Predict future production using average daily gain

Genomic testing is a popular way to rank heifers as part of a strategic breeding plan. But it’s not the only way. If you’re looking to not only maximize genetic progress, but also future profit, there might be alternative methods to decide which heifers to cull and which to keep.

ADG as a female selection tool?

References to average daily gain (ADG) typically come from the beef industry and more recently, dairy nutritionists and researchers. Dairy-focused studies have proven that individual dairy farms can see the impact of ADG on future milk production potential. In fact, a study from Cornell University showed that for every one kilogram of pre-weaning ADG, calves produced 1,113 kilograms more milk during their first lactation1.

Weighing individual animals at set points early in life to determine their average daily gain can be an effective means to predict which animals will produce the most throughout their first and later lactations.

Take the example below. On this 2,850-cow Holstein farm in Wisconsin, weights are taken on each individual calf at birth and weaning, and calculated within their herd management software to figure out the ADG of each animal.

Table 1Number of cowsADGAvg. 1st Lactation 305-day ME milk
Group 1: Top 25% for highest ADG3322.1833105 lb
Group 2: Bottom 25% for lowest ADG3081.6731838 lb
Difference0.511267 lb

Here, we’ve broken down all first lactation animals into quartiles based on their initial average daily gain. The top animals for ADG gained nearly 2.2 pounds per day from birth to weaning, while the bottom 25% of animals for ADG gained 1.67 pounds per day during that time.

Fast forward two years to when these calves have entered the milking herd, and that difference in average daily gain equates to a real and noticeable 1267 pound per animal difference in first lactation 305-day ME milk production. This is on par with the results from 2012 Cornell University study mentioned above.

 

Genetics still matter

If we take this analysis one step further, we can see that genetics are able to express themselves to a fuller advantage in healthier calves that grow more each day.

When we split the groups from the same analysis shown above in Table 1 to do two separate genetic assessments we can see how animals in each group perform in relation to their genetic predictions. This shows us whether ADG affects whether an animal can produce to their genetic potential.

Table 2 takes only the first lactation cows that were among the top 25% of heifers for highest birth to weaning ADG. Within this high ADG group of animals, we compare 305ME milk production based on parent average for PTA Milk within that group.

Table 2: Highest ADG animalsNumber of cowsADGParent Average PTA MilkAvg. 1st Lact 305ME Milk
Top 50%: Highest Parent Avg PTAM1662.1958634503 lb
Bottom 50%: Lowest Parent Avg PTAM1662.1710531725 lb
Difference4812778

Here, it shows that among only the calves with the highest average daily gain, those animals with the higher parent average for PTA Milk calved in to produce nearly 2800 pounds more milk than the animals with a lower parent average for PTA Milk.

Table 3 looks at this the same way, but only splits out just the first lactation cows that were in the bottom 25% for lowest birth to weaning ADG. When we compare milk production within that isolated low ADG group, we see that a higher parent average for PTAM equated to just over 1800 additional pounds of milk in the first lactation compared to the animals with the lowest parent averages for PTAM.

Table 3: Lowest ADG animalsNumber of cowsADGParent Average PTA MilkAvg. 1st Lact 305ME Milk
Top 50%: Highest Parent Avg PTAM1521.6856932768 lb
Bottom 50%: Lowest Parent Avg PTAM1521.675530958 lb
Difference5141810

Within both groups of animals a higher parent average for PTAM meant even more milk than predicted by genetics. However, when you compare the difference in 1st lactation 305MEs you can see that the high ADG group outpaces the low ADG group by nearly an additional 1000 pounds of milk in the first lactation.

This means that when calves are given the best nutrition and care, and achieve higher average daily gains, their genetics are better able to express themselves beyond what’s even predicted.

Strategic management decisions

With this proof in mind, if your farm’s situation dictates culling extra heifers, it’s best to do that in a strategic way. While genomic testing certainly has its merits for this purpose, the power of monitoring and measuring ADGs can serve as an effective alternative.

If the animals that perform well early in life go on to perform better than herdmates later in life, it’s an easy decision to keep the fastest growing animals in your herd. If you cull those calves that perform at a sub-par level from the start, you can avoid the feed costs for animals that will produce less than herdmates in the future, and avoid housing for animals that you may not have room for on your farm.

Knowing that those healthy calves will put extra pounds in the tank down the road also enforces the power of proper and progressive calf nutrition and a sharp focus on overall calf health. Even when times are tight, the future of your milking herd should not be put on the back burner.

 

Points to ponder

  • When implementing a strategic plan to cull heifers, consider weighing each individual calf at various milestones in her life to determine average daily gains. A ranking based on ADG to sort which heifers to keep and which to cull can have a big impact on overall future costs of production.

  • Don’t let the genetics you select go to waste. An animal’s genetics are expressed best when she receives the best nutrition and care from day one. The amount each calf gains per day, even in those first few months, will make a major impact on future production potential.

 

References:

Soberon F, Raffrenato E, Everett RW and Van Amburgh ME. 2012. Preweaning milk replacer intake and effects on long-term productivity of dairy calves. J Dairy Sci. 2012 Feb;95(2):783-93. doi: 10.3168/jds.2011-4391.
0 2 Continue Reading →

Use genomic sires with confidence

Genomic proofs provide the confidence for you to use exciting sires earlier in their careers.

All bulls we bring to Alta are genomic and health tested before joining any line-up. You can be confident these bulls will deliver on their genetic promises, since genomic testing provides an immediate reliability of nearly 70% for production, health and conformation traits.

The table below illustrates the difference in production, health and conformation values of our three different groups of genomic-proven sires.

AUG. 2017TPINM$MILKPROFATPTATUDCFLCPLDPRCCRHCRSCE
ADVANTAGE-Only2711834172663811.991.841.316.92.13.82.37.2
G-STAR2573736148055701.731.701.136.21.73.22.27.0
FUTURE STAR2466672122846641.381.380.965.91.63.01.96.5
Alta ADVANTAGE sires

Our 25 newest bulls with a diverse trait specialties and elite rankings on a variety of customized genetic plans are among the sires available only for our Alta ADVANTAGE partner herds.

Once a bull starts making semen, he typically starts his career on the Alta ADVANTAGE only list. These newest, young bulls simply don’t produce enough semen to be readily available to all farms around the globe. So while we work to build semen inventory, we give our loyal Alta ADVANTAGE partner herds priority access to these elite sires that best fit their customized genetic plans.

G-STARS

Once a bull has made enough semen he is added to the G-STAR sire list. With 25 new G-STAR additions this proof round, these sires are readily available to everyone, and provide a wide array of outliers for various production, health and type traits. From this elite list, you can find a great selection of bulls to fit your genetic plan.

FUTURE STARS

About a year after a bull is first released, and after both sire fertility and calving ease information have been gathered, the chosen few that prove themselves to be above average for fertility and less than 8% for sire calving ease and sire stillbirth are added to the FUTURE STAR list.

This proof round, 22 bulls earned their FUTURE STAR stripes, gaining enough observations to prove their high fertility CONCEPT PLUS status, and with enough offspring born to prove themselves as calving ease sires.

FUTURE STARS are the way to go if you want the benefits of elite genomics, but prefer the added reliability of proven sire fertility and real observations for calving ease. You may give up some production and health as compared to the available G-STAR or ADVANTAGE only sires, but you gain peace of mind knowing that you’re upping your chances for a pregnancy and a live calf resulting from an easier calving. Because of the known calving ability, FUTURE STARS serve as ideal options to use on heifers.

Still not convinced?

If you still don’t feel comfortable going all in with genomic-proven sires, look below to compare our top daughter-proven and top genomic sires. Selection from among the top of the daughter-proven lineup provides you with a highly reliable 2525 average TPI.

Yet, if you’re looking for faster progress, the tables below prove that your best genetic gifts come from the genomic group of sires, which averages nearly 200 TPI points higher than their daughter-proven counterparts.

AUG 2017Top daughter-proven siresTPI
11HO11434AltaCR2670
11HO11437AltaSPRING2622
11HO11380AltaROBLE2559
11HO11478AltaLEAF2512
11HO11379AltaRABO2505
11HO11337AltaCAIN2490
11HO11422AltaJAKE2479
11HO11348AltaBGOOD2476
11HO11419AltaLEGAL2472
11HO11369AltaPRIMO2465
Average2525
AUG 2017Top genomic-proven siresTPI
11HO11778AltaROBSON2740
11HO11725AltaAMULET2714
11HO11630AltaMORENO2705
11HO11883AltaMASTER2705
11HO11743AltaPURITY2698
11HO11970AltaJABBA2693
11HO11982AltaSPRITE2691
11HO12007AltaJUAREZ2691
11HO11758AltaNIXER2686
11HO11942AltaTOKEN2682
Average2701

To further build your confidence in the genomic-proven groups, it’s important to note that every single one of these top daughter-proven sires were previously used globally as Alta ADVANTAGE sires, FUTURE STARS and/or G-STARS. The track record is significant for these former genomic favorites to deliver on their initial predictions.

With that in mind, have confidence in using a team of sires from the Alta ADVANTAGE, G-STAR or FUTURE STAR lists that meets your goals for production, health and conformation to optimize future profitability.

0 0 Continue Reading →

August 2017 daughter-proven chart-toppers

We welcome a variety of production, health and type trait specialists to our new daughter-proven lineup.

11HO11434 Har-Dale-Acres-JP AltaCR | Mogul x Trigger | CP | 511 | 2670 TPI

  • A breed leader for sire fertility, holding the coveted CONCEPT PLUS designation
  • Exceptional 2670 TPI, jumping 139 points since the last proof round
  • CONSISTENCY –clear pattern of white, modern moderate-size cows with outstanding udders
  • A definite udder improver: among minus stature bulls, he’s a breed leader for UDC

11HO11437 Westenrade AltaSPRING | Mogul x Gerard | 511 | 2622 TPI

  • International favorite – daughters create impressive milk records right out of the gate
  • Definite fat and protein yield improver
  • Stylish daughters with high, wide rear udder attachments

11HO11380 Lone-Oak-Acres AltaROBLE | Mogul x Observer | 511 | CP | 2559 TPI

  • A health and type trait specialist at 6.5 PL, 3.13 UDC, 2.77 PTAT
  • Excellent sire fertility with CONCEPT PLUS status, and great daughter fertility at 3.8 DPR
  • Daughters are stylish, stretchy cows with fancy udders and strong attachments

11HO11379 Lone-Oak-Acres AltaLEAF | AltaOAK x Trigger | 511 |CP | 2512 TPI

  • Daughters with outstanding udders and white, stylish frames are easy to pick out
  • A well-balanced proof with a high 7.5 PL and exceptional health traits
  • High milking daughters with impressive protein yields

11HO11379 Lone-Oak-Acres AltaRABO | Mogul x Observer | 511 | CP | 2505 TPI

  • Early milking daughters have impressive udders and straight-lined frames
  • FUTURE STAR graduate provides easy calvings and high fertility CONCEPT PLUS status
  • A balanced proof with exciting conformation, over 100 CFP, and sound health and fertility traits
  • Full brother to new release, AltaROBLE, but with slightly higher production values

11HO11422 T-Spruce AltaJAKE | Petrone x Observer | 511 | CP | 2479 TPI

  • Exciting type and health trait specialist with the high fertility CONCEPT PLUS designation
  • Fancy daughters with outstanding, high, wide rear udders
  • Healthy, fertile cows that produce high quality milk
With August proofs also came adjustments to the TPI formula. Find more information about these industry updates HERE.

Looking to find which group of new or current bulls will best meet your farm’s goals? Use Alta’s Advanced Bull Search and work with your trusted Alta adviser to set and implement your own, customized genetic plan.

0 0 Continue Reading →

Understand the new TPI changes

With August 2017 proofs Holstein Association USA (HA USA) will make updates to TPI, Udder Composite (UDC) and Foot & Leg Composite (FLC). The following information will help you understand these changes and how they may affect sire ranks.

As with any index changes, sires will re-rank. We can attribute most of the re-ranking to the fact that stature is being added to the calculations for UDC and FLC.

Industry standard index changes remind us how important it is to set your own customized genetic plan. While we review the changes being made to Udder Composite and TPI for the upcoming proof round, keep your own genetic plan in mind to ensure it continues to match your farm’s current goals and future plans.

Udder Composite changes

The biggest change that will take place within UDC is that stature is now incorporated with a negative emphasis to promote a more moderate sized frame on Holstein cows of the future. While all individual trait weights within UDC will adjust slightly, stature will now have a relative weight of 17% of UDC. This change comes mostly from the reduced emphasis on udder depth.

A comparison between the previous and new versions of UDC is shown in Table 1 below, with major changes in bold.

TABLE 1Previous percent weight within UDCAugust 2017 percent weight within UDC% Change
Fore udder16%13%-3%
Rear udder height16%19%3%
Rear udder width12%16%4%
Udder cleft9%7%-2%
Udder depth35%17%-18%
Front teat placement5%3%-2%
Rear teat placement (now called Rear teat optimum)7%4%-3%
Teat length (now called Teat length optimum)-4%4%
Stature--17%17%

The other change taking place with udder traits is that both rear teat placement and teat length will now be two-way traits, and be called rear teat optimum and teat length optimum, respectively.

The rear teat length and placement of the Holstein breed has evolved to a shorter and closer average. By adjusting to an intermediate optimum, rather than a close and short ideal, is intended to help get the breed back to a more desirable norm.

The new Foot & Leg Composite

As with UDC, the main difference in the new FLC comes from the addition of stature to the index. Table 2 shows that stature is added mostly from the reduced weight now placed on foot angle and rear leg side view.

TABLE 2Previous percent weight within FLCAugust 2017 percent weight within FLC% Change
Foot angle24%8%-17%
Rear legs rear view19%18%-1%
Foot and leg score50%58%8%
Stature-17%17%
Rear leg side view8%--8%

TPI updates

In addition to the UDC and FLC updates, the TPI formula will also be revamped. While the weights within the production, health and conformation categories remain the same, the individual trait weights within the production and health buckets will change.

The biggest change to the new TPI formula is found within the production category as a new protein to fat ratio. You can see all changes in Table 3 below.

TABLE 3Previous weight within TPIAugust 2017 weight within TPI
Protein2721
Fat1617
Feed Efficiency38
PRODUCTION TOTAL46%46%
Fertility Index1313
Productive Life74
Livability-3
Somatic Cell Score-5-5
Daughter Calving Ease22
Daughter Stillbirth11
HEALTH TOTAL28%28%
Udder Composite1111
PTA Type88
Foot & Leg Composite66
Dairy Form-1-1
CONFORMATION TOTAL26%26%

HA USA reweighted protein, fat and feed efficiency, and therefore adjusted the fat to protein ratio. Starting in August, there will be 6% less emphasis directly on protein, 5% emphasis added to feed efficiency and 1% more emphasis on pounds of fat.

For your reference, feed efficiency is calculated as follows. Please note that Body Weight Composite within this formula is the new calculation to replace Body Size Composite.

Feed Efficiency = (-0.0187 x Milk) + (1.28 x Fat) + (1.95 x Protein) – (12.4 x Body Weight Composite)

In addition to the adjustment on the production bucket, HA USA will now incorporate livability as part of the TPI formula. The 3% weight on livability will come directly from that same reduction in emphasis on productive life.

What do these changes mean?

The new addition of stature to Udder Composite and Foot & Leg Composite, along with the TPI updates, are in place with an overarching goal to aid producers in creating more moderate sized, efficient and profitable cows.

Industry standard indexes can change at any point. These changes reinforce the importance of setting your own customized genetic plan. Work with your trusted Alta advisor to review the weights you place on each individual production, health and conformation trait. We want to help you ensure your plan always aligns with your farms current situation and future goals.

0 0 Continue Reading →

Proof terminology explained

The letters, numbers and acronyms on a proof sheet can be complicated. Here, we break down the meaning and explanation of the proof indexes, traits and terminology.
Selection indexes

Genetic selection indexes are set by national organizations or breed associations. Genetic indexes help dairy producers focus on a total approach to genetic improvement, rather than limiting progress by single trait selection.

However, each farm is unique, with different situations and future plans. With that in mind, it’s important to understand what traits are included in each industry standard index. When you know what’s included, you can more effectively evaluate if the index truly matches your farm’s goals.

TPI = Total Performance Index
TPI is calculated by the Holstein Association USA (HA-USA) and includes the following trait weightings.

Image to show the weights on production, health and type for the TPI Index

PRODUCTION TRAITS = 46%

21% Pounds of protein
17% Pounds of fat
8% Feed efficiency

HEALTH TRAITS = 28%

13% Fertility index
-5% Somatic cell score
4% Productive life
3% Cow livability
2% Daughter calving ease
1% Daughter stillbirth

TYPE TRAITS = 26%

11% Udder composite
8% PTA type
6% Foot & leg composite
-1% Dairy form

NM$ = Net Merit Dollars

NM$ is a genetic index value calculated by the Council on Dairy Cattle Breeding (CDCB). It describes the expected lifetime profit per cow as compared to the base of the population born in 2010. Trait weightings are generally updated approximately every five years and include emphasis on the following traits. The current trait breakdown is in place as of April 2017. Please note that trait weights are rounded to the nearest percentage.

Image to show trait weights for production, health and conformation within Net Merit $.

PRODUCTION TRAITS = 43%

24% Pounds of fat
18% Pounds of protein
-1% Pounds of milk

HEALTH TRAITS = 41%

13% Productive life
7% Cow livability
7% Daughter pregnancy rate
-6% Somatic cell score
5% Calving ability
2% Cow conception rate
1% Heifer conception rate

TYPE TRAITS = 16%

7% Udder composite
6% Body weight composite
3% Foot & leg composite

CM$ = Cheese Merit Dollars

CM$ is an index calculated to account for milk sold to be made into cheese or other dairy products. The current CM$ index was adjusted in April 2017 and the following trait weights are considered. Please take note that trait weights shown have been rounded to the nearest percentage.

Image showing the trait breakdowns for production, health and type within the Cheese Merit dollars formula

PRODUCTION = 50%

22% Pounds of protein
20% Pounds of fat
-8% Pounds of milk

HEALTH = 37%

12% Productive life
-7% Somatic cell score
6% Cow livability
6% Daughter pregnancy rate
4% Calving ability
1% Cow conception rate
1% Heifer conception rate

TYPE TRAITS = 13%

6% Udder
5% Body weight composite
2% Foot & leg

GENERAL PROOF TERMS

CDCB: Council on Dairy Cattle Breeding
Calculates production and health trait information for all breeds

MACE: Multiple-trait across country evaluation
Denotes that a bull’s proof evaluation includes daughter information from multiple countries

PTA: Predicted transmitting ability
The estimate of genetic superiority or inferiority for a given trait that an animal is predicted to transmit to its offspring. This value is based on the animal’s own records and the records of known relatives.

EFI: Effective future inbreeding
An estimate, based on pedigree, of the level of inbreeding that the progeny of a given animal will contribute in the population if mated at random

GFI: Genomic future inbreeding
Similar to EFI, an animal’s GFI als predicts the level of inbreeding he/she will contribute in the population if mated at random. Yet, GFI provides a more accurate prediction. It takes into account genomic test results and the actual genes an animal has.

aAa: an independent method for making mating decisions

DMS: a separate, independent method for making mating decisions

 

PRODUCTION TRAIT TERMS

PTAM: Predicted transmitting ability for milk

PTAP: Predicted transmitting ability for protein

PTAF: Predicted transmitting ability for fat

PRel: the percent reliability of a sire’s production proof

 

HEALTH & FERTILITY TRAIT TERMS

PL: Productive Life
Measured as the total number of additional or fewer productive months that you can expect from a bull’s daughters over their lifetime. Cows receive credit for each month of lactation, with more credit given to the first months around peak production, and less credit given for months further out in lactation. More credit is also given for older cows than for younger animals.  

LIV: Cow livability
Measure of a cow’s ability to remain alive while in the milking herd.

SCS: Somatic cell score
The log score of somatic cells per milliliter.

DPR: Daughter pregnancy rate
Daughter Pregnancy Rate is defined as the percentage of non-pregnant cows that become pregnant during each 21-day period. A DPR of ‘1.0’ implies that daughters from this bull are 1% more likely to become pregnant during that estrus cycle than a bull with an evaluation of zero. Each increase of 1% in PTA DPR equals a decrease of 4 days in PTA days open.

HCR: Heifer conception rate
A virgin heifer’s ability to conceive – defined as the percentage of inseminated heifers that become pregnant at each service. An HCR of 1.0 implies that daughters of this bull are 1% more likely to become pregnant as a heifer than daughters of a bull with an evaluation of 0.0

CCR: Cow conception rate
A lactating cow’s ability to conceive – defined as the percentage of inseminated cows that become pregnant at each service. A bull’s CCR of 1.0 implies that daughters of this bull are 1% more likely to become pregnant during that lactation than daughters of a bull with an evaluation of 0.0.

HRel: the reliability percentage for a sire’s health traits

 

HEALTH & CALVING TRAIT TERMS

SCE: Sire calving ease
The percentage of bull’s calves born that are considered difficult in first lactation animals. Difficult births include those coded as a score of 3, 4 or 5 on a scale of 1-5.

DCE: Daughter calving ease
The percentage of a bull’s daughters who have difficult births during their first calving. Difficult calvings are those coded as a 3, 4 or 5 on a scale of 1-5.

SSB: Sire stillbirth
The percentage of a bull’s offspring that are born dead to first lactation animals.

DSB: Daughter stillbirth
The percentage of a bull’s daughters who give birth to a dead calf in their first lactation.

 

TYPE / CONFORMATION TRAIT TERMS

PTAT, UDC and FLC are all calculated by the Holstein Association USA.

PTAT: Predicted transmitting for type – referring to the total conformation of an animal

UDC: Udder composite index; comprised of the following linear trait weights:
19% Rear udder height
17% Udder depth
-17% Stature
6% Rear udder width
13% Fore udder attachment
7% Udder Cleft
4% Rear teat optimum
4% Teat length optimum
3% Front teat placement

FLC: Foot and leg composite index; comprised of the following trait weights:
58% foot and leg classification score
18% rear legs rear view
-17% stature
8% foot angle

TRel = the percent reliability for a sire’s conformation/type proof

 

GENETIC CODES

POLLED
PO: observed polled
PC: genomic tested as heterozygous polled; means 50% of offspring are expected to be observed as polled
PP: genomic tested as homozygous polled; means that 100% of offspring are expected to be observed as polled

COAT COLOR
RC: carries the recessive gene for red coat color
DR: carries a dominant gene for red coat color

RECESSIVES & HAPLOTYPES

These codes, or symbols representing the code, will only show up on a proof sheet if an animal is a carrier or test positive for one of the following. The acronyms denoting that an animal is tested free of a recessive will only show up on its pedigree.

BY: Brachyspina
TY: Tested free of brachyspina

BL: BLADS, or Bovine leukocyte adhesion deficiency
TL: Tested free of BLADS

CV: CVM or Complex vertebral malformation
TV: Tested free of CVM

DP: DUMPS, or Deficiency of the uridine monophosphate synthase
TD: Tested free of DUMPS

MF: Mulefoot
TM: Tested free of mulefoot

HH1, HH2, HH3, HH4, HH5: Holstein haplotypes that negatively affect fertility
HCD: Holstein haplotype for cholesterol deficiency

0 0 Continue Reading →

Alta Advantage Showcase Tour 2017 – by the numbers

Guests from around the world joined together to share management strategies and insight during the 18th Alta Advantage Showcase Tour held in Michigan June 21-23, 2017.

On-farm stations were set up to provide insight on all areas of dairy herd management. Some of the topics covered included:

  • Reproduction
  • milk quality and parlor management
  • transition cow management
  • feed and nutrition
  • colostrum management and calf raising
  • heifer raising
  • labor organization
  • genetic planning
  • dairy technology
  • Performance Pens featuring some of the newest Alta sires to have milking daughters
  • and more!
Here’s a look at the 2017 Alta Advantage Showcase Tour, by the numbers:
360guests
26countries represented
18Alta Advantage Showcase Tours now complete
35on-farm stations that guests experienced throughout the tour
6charter buses required to transport guests
19,000cows milked among all pre-tour and Showcase host farms
9outstanding host dairies that graciously opened their farm for our guests to visit
Pre-tour host: Rich-Ro South Dairy | St. Johns, MI
Pre-tour host: Berlyn Acres | Fowler, MI
Walnutdale Farms | Wayland, MI
Prairie View Dairy | Delton, MI
Schaendorf Farms | Allegan, MI
Tubergen Dairy | Ionia, MI
Simon Farms | Westphalia, MI
Steenblik Dairy | Pewamo, MI
Double Eagle Dairy | Middleton, MI

These numbers sum up to ONE tremendous tour!

Guests enjoyed the friendly camaraderie and the ability to learn from both our host farm owners and others on the tour. These experiences left everyone with a lasting impression of Alta’s progressive approach to create value, build trust and deliver results to clients around the world.

 

Click HERE to view the collection of photos and videos from the tour!

0 0 Continue Reading →

The proof is in your numbers

Let us show you…

We can show you the proof that genetics are one of the cheapest investments you can make to improve the profitability and efficiency of your herd. Proof sheet numbers may seem unclear or unrealistic. So we break them down to see how they translate within your own herd.

When you use a herd management software program, we can create a genetic assessment of your herd to see if genetics really work on your farm.

Do your 2-year-olds give as many pounds of milk as their sires’ proofs predict? Do these cows become pregnant as quickly as their sires’ DPR numbers suggest? And do daughter stillbirth numbers prove to be accurate indicators of DOAs?

When we do a genetic assessment for your herd, it’s important to realize that we only take into account first-lactation animals in order to minimize environmental effects. Phenotype equals genetics plus environment. So when we eliminate – or at least minimize – environmental influences, the actual performance differences we see are due to genetics.

We want to show you how those proof numbers translate to more pounds of milk, more pregnancies and fewer stillborn calves. So here, we take one of our real DairyComp 305 analyses of a real 1,500-cow herd for answers.

The proof in genetics: PTA Milk (PTAM)

We start with PTAM, which tells us how many more pounds of milk a first-lactation animal will produce compared to herdmates on a 305-day ME basis. We set out to find if higher PTAM values on this farm actually convert to more pounds of milk in the tank.

In this example, we sort all first-lactation animals with a known Holstein sire ID, solely on their sires’ PTAM values. We then compare that to their actual 305-day ME milk records.

As Table 1 shows, based on genetics, we expect the top 25 percent of first-lactation heifers to produce 1,541 more pounds of milk on a 305ME basis than their lower PTAM counterparts. In reality, we see a 2,662-pound difference between the top PTAM animals and the bottom in actual daughter performance.

Table 1: How does selection for PTAM affect actual 305ME performance?
# of cowsAvg. Sire PTAMAvg. 305ME Production
Top 25% high sire PTAM178150844080
Bottom 25% low sire PTAM171-3341418
Difference15412662
This means that for every pound of milk this herd selects for, they actually get an additional 1.69 pounds of milk. So these first-lactation animals are producing well beyond their genetic potential.

Why do they get more than expected?

When we do most on-farm genetic assessments, we find that the 305ME values closely match the predicted difference based on sire PTAM. However, in this example, the production exceeds what’s expected by more than 1,100 pounds.

We often attribute that bonus milk top-level management, where genetics are allowed to express themselves. This particular herd provides a comfortable and consistent environment for all cows. All of these 2-year-olds are fed the same ration, housed in the same barn and given the same routine. At more than a 40,000-pound average 305ME, this is certainly a well-managed herd, which allows the top genetic animals to exceed their genetic production potential.

Perhaps even more importantly, the identification in this herd is more than 95 percent accurate. Without accurate identification, this analysis simply won’t work. That’s because some cows whose real sire information puts them in the bottom quartile will actually appear in the top quartile and vice-versa.

0 0 Continue Reading →

Polled genetics – examine the pros and cons

The polled gene in dairy cattle is dominant over the horned gene

Polled dairy cattle trace back as far as pedigree records have been kept. The polled gene in dairy cattle is dominant over the horned gene. Yet horned cattle are still much more prevalent in the global dairy population because few producers ever chose to select for polled cattle as part of their breeding program. This is because the real, economic paybacks of selecting for production, health and conformation traits has traditionally trumped the desire for polled genetics.

Genomic selection has allowed polled enthusiasts to focus on high ranking polled animals to propagate the polled population. However, producers stressing genetic improvement in other traits are also advancing their genetics at an equally rapid rate.

You can add polled as a criteria to your genetic plan, but must keep in mind the financial repercussions of that decision in terms of the pounds of milk and components you’ll give up, and the health and fertility you may need to sacrifice, just to avoid dehorning.

The more recent public awareness about dehorning cattle has made it another hot button topic in the industry. The naturally hornless cattle have gained popularity in recent years because of consumer opinion on the dehorning process, and the side effects they feel result from it. This perception has driven producers to create more naturally polled animals than ever in the past.

The pros of polled genetics

Despite the genetic and performance sacrifices made by selecting for polled animals, many producers do see the opportunity to incorporate polled genetics into their breeding program.

  • Avoid dehorning

You can save dollars, time, and labor, and also minimize stress on your calves by foregoing the need for dehorning. The average dehorning cost varies from one farm to the next based on the chosen method of dehorning, and there is a chance of causing additional stress on the calves during a crucial growth time.

However, it’s important to remember that modern dehorning methods done properly, and at an early age, will nearly eliminate stress on the calves, and will minimize your time and costs.

  • Cater to consumer perceptions

It’s a fact that consumer perception directs many aspects of the dairy industry’s reality. Animal rights activists have criticized dehorning for years, but it hasn’t been until recently that the general public has joined the activists’ view on dehorning as a detrimental process. With increased awareness about this common farm chore also comes increased consumer demands on how they feel farmers should handle it on their dairies.

We clearly don’t want animals with horns running around dairies, so the question is whether to dehorn calves or breed for polled genetics. Unless consumers are willing to pay a premium for milk from naturally hornless cattle, you will likely be leaving dollars on the table by selecting exclusively for homozygous polled sires if you want to ensure no animals are born with horns.

  • The polled gene is dominant

The basics of genetics tell us that since the polled gene is dominant over the horned gene, animals with one copy of the polled gene and one copy of the horned gene will not have horns, and a naturally hornless animal can be created in one generation. It also means it is easier to make more polled animals faster than if the polled gene was recessive.

An animal can have one of three combinations for the polled/horned gene:

PP = homozygous polled means this animal has no horns, an all offspring from the animal will be born without horns
Pp = heterozygous polled means this animal does not have horns, but offspring may or may not have horns depending on their mate
pp = born with horns

If you’re starting with only horned animals in your herd, the figures below demonstrate your results mating cows to a polled sire. The table on the left shows that a homozygous polled bull bred to a horned cow will result in 100% hornless offspring. The table on the right illustrates that a heterozygous polled sire bred to a horned cow will result in only 50% polled offspring.

FutureStar with SubText Logo

The downside to polled genetics

Eliminating the need for dehorning may seem like the right choice for your dairy. However, the genetic sacrifices you will make in order to get to that point cannot be overlooked. Whenever you add extra selection criteria to your genetic plan, you will sacrifice in other areas. Here are just a few reasons to think twice about selecting exclusively for polled genetics in your herd.

  • The continuous need for polled sires
    Like mentioned above, the polled gene is dominant, so you can create a polled offspring in just one generation. What many producers tend to forget is that, at this point, maintaining a population of polled cattle in your herd is much more difficult.

As the images above show, using a heterozygous polled bull will not yield 100% polled offspring. To get to the point of a completely polled herd, and to maintain it once you’re there, you continually need to use only homozygous polled sires. This may not seem difficult, but it leads to the next shortcoming of using exclusively polled sires.

  • Limited availability and variation on polled sires
    Since the prevalence of polled animals within the various dairy breeds is still low, it will still take many generations to genetically eradicate horned animals from your herd if you want to maintain reasonable inbreeding levels.

Even though the number of polled bulls in active AI has increased substantially over recent years, the total number of sires providing that polled gene is still limited. AI companies will only bring in bulls at genetic levels high enough to help you make progress in your herd. And since selection for polled animals has only recently gained popularity, many of the polled bulls are closely related – either from a small group of elite polled cow families or with sires in common.

Even with selection standards in place for elite polled animals, their genetic levels don’t yet match up.

  • Genetic sacrifice and compromised future performance
    Most importantly, at this point in time, polled bulls, as a whole, don’t yet live up to the genetic levels of their horned counterparts. With polled as a strict selection criteria, you will miss out on the best sires, regardless if you select from the genomic or daughter-proven lists. When you figure the amount of production, health and conformation that could be lost by limiting your options to only polled sires, dehorning calves becomes even less of an issue.

Review your pros and cons for polled genetics

As you set your genetic plan keep in mind the pros and cons of selecting exclusively for polled genetics. At this point, the overall genetic and performance levels of horned animals still outpace those of polled cattle. Modern dehorning methods minimize stress on calves, so when performed correctly and at the proper time, it should be almost a non-issue.

On the flip side, you could make a case for exclusively polled sire selection if your milk plant is willing to pay more for milk from polled cattle, or if consumer perception drives your decisions.

Regardless of your selection decision, make sure it aligns with the customized genetic plan you put in place so the genetic progress you make on your farm is in the direction of your goals.

0 0 Continue Reading →

 

Recent Comments by Chrissy Meyer

    No comments by Chrissy Meyer

x

Download the BullSearch App

For the best experience on a mobile device, download the Bull Search App

Download the App
Go to desktop site anyway